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Abstract

Based on the method of separation variables with addition developed in recent years, new methods of separation variables

are proposed, and two algebraically explicit analytical solutions to the general partial differential equation set of non-Fourier and non-Fick

heat and mass transfer in porous media drying are derived. The physical meaning of these solutions is simple and clear, and they are valu-

able for computational heat and mass transfer as benchmark solutions.
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Drying process in porous media widely exists in

many fields such as energy, chemistry, biology,
medicine and architectonics. Researches into this kind
of phenomenon are traditionally based on Fourier law
and Fick law. These two laws include the hy potheses
of infinite propagation of heat and mass disturbance,
respectively. Such an approximate approach is precise
enough for the conventional unsteady heat and mass
transfer. However, for high intensive and rapid dry-
ing process, it could lead to errors to some extent.
Therefore, it is necessary to consider the non-linear
relationship betw een the propagation of heat and mass

flux and their gradients (the relaxation effects).

The general equation set which describes non-
Fourier and non-Fick heat and mass transfer for capil-
lary porous media has been given in Ref. [ 1]. To
simplify the solution of the equation set, Ref. [ 1]
gave two assumptions: in a high intensive and rapid
drying process, the temperature gradient has much
smaller effect on gas transfer process compared with
the pressure gradient; the combined substances in the
capillary porous media exist mainly in liquid form,
and the content of initial water steam is very small
and can be neglected. Based on these two assump-
tions, Ref. [ 1] proposed an equation set of one-di-
mensional unsteady temperature field and moisture
field:
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Here, 0, u, ¢, x are temperature, moisture,
time and geometric coordinates respectively, T4 is
the heat relaxation time and Ty, is the mass relaxation
time; a is the coefficient of temperature conductivi-
ty s € is the moisture gradient coefficients Cyq is the
reduced specific heat of infinitesimal volume, ¥ is the
phase transformation coefficient, 7 is the latent heat

0is the
thermal gradient coefficient, R is the gas constants

of vaporization, an is the mass diffusivity,

A is the wefficient of heat conductivity of gaseous phase

mass, and K g is the coeffident of infiltration flow.

Many analytical solutions play a key role in the
early development of fluid mechanics as well as of the
heat conduction' > . Besides their irreplaceable theo-
retical meaning, analytical solutions can also be ap-
plied as benchmark solutions to develop numerical
methods.
analy tical solutions for equation set (1) will be de-

Therefore, possible algebraically explicit
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duced in this paper to promote the researches in heat
and mass transfer of drying process.

Ref. [ 4] reports two algebraically explicit ana-
lytical solutions of simplified form of equation set (1)
in which T¢= ™= a13=0, which means non-Fourier
and non-Fick effects are not considered. However, no
analy tical solution has been reported for equation set
(1. In this papers two sets of algebraically explicit
analy tical solutions are deduced for equation set (1)
and their physical meaning is discussed. These ana-
lytical solutions are valuable to deepen the under-
standing of non-Fourier and non-Fick heat and mass
transfer in the rapid drying process of porous media.
They can also be applied to check the accuracy, con-
vergence and stability of relative numerical com puta-
tion solutions. Therefore, these analytical solutions
have high reference value. For a given analytical solu-
tion, its correctness can be proved easily by substitut-
ing it into the equation set.

1 The first set of analytical solution

For an unknown function f(x, y) in partial dif-
ferential equations, the common method of separation
variables is to assume f= X(x)°Y (y). Another ap-
proach is to assume f= X (x)+ Y (y), which is
named the method of separation variables with addi-
tion” . Because the assumptions of function forms are
measures to separate variables, we can, in order to
realize separation, assume other function forms ac-
cording to the modality of equations. It has been
proved that the method of separation variables with

e . . [6—13
addition can apply to various sorts of equations .
Based on the method of separation variables with ad-
dition, and according to the particularity of the equa-
tion set (1), assuming:

0= Ti()+X 1)+ (Kix*>+ Kax)t,

u= Tr()+X>(x)+ (Kyx?+ Kyx)ts

the variables of equation set (1) can be separated as

follow s;
! " !
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where K |—K ¢ are arbitrary constants. In the follow -
ing equations, K; represent different arbitrary con-
stants,

From the left side of Eq. (3), we have
T = Kian +Kszan)t’

+ (Ke—2K1a21Tw — 2K3a22 T t
t
+ K 7exp . +Ki». 4)

Substituting Eq. (4) into the left side of
Eq. (2), the following result can be obtained:
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From the right side of Eqs. (2) and (3), we
have

X1 =[(Ksain— Kizaraz— Kian)x*
+2(K4a1z—K4a13a22—K2a22)x3
+6(Ksar — Ksan)x + Kox)
/12Ca2axn — aiaz), 6)

X2=[ (Kzazia + K1a2— Kzam) x"
+2(Kran + Ksanan — Kqar)x®
+6(Ksan — Kean)x*+ Kox]
/12Ca2an — anaz). 7

(4)—(7),
braically explicit analytical solution of equation set
(1) can be obtained:
0=(Kiai1+ Kzain— Kiapa — Kzaisan)t
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q

+[ (Kzai— Kzanaiz— Kia)x*
+2(Kaai2— Ksavzazz— Kzazz)x3
+6(Keain— Ksazz)x2+K9x]
/12Cara — anan)+ K,
u=(Kian+ Kzan)t®
+ (K6 —2K1@21Tmn —2K3a2 Tm) t

Combining Egs. a possible alge-

t
+ Krexp| — | T (Ksx"+ Kax)t

+[ Ksanais+ Kian— Kzain)x*
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+ 6(Ksan — Kean x>+ K 10x]
/12Capan— anan) T+ K. @®)

Solution (8) inclides terms whose denominators
are (aiza2z— aira22). Thereby it is necessary that
(anaxi—aiian)7#0. According to Ref. [4], in
general (@i2ax— @i a2 X0, so this solution is ef-
fective.

The initial condition for solution (8) is;
t =0
0 =[ (K3a1»— Kzanan — Kian)x*
+2(Ksar— Ksanar— K2a22) x°
+6(K6a12*K5a22)x2+K9x]
/12Ca2an — arran)

a|3K7Tm

+Knu— + Ks,

m q
u=[(Kzazia+ Kia21 — K3ai)x"
+2(Kasan+ Ksaizan — Kian)x®
+6(Ksan— Kesan) x>+ Kiox]
/12Canan — anax)t+ Kp+Ki.

It means that the temperature field and moisture
field are initially uneven commonly, but this distribu-
tion is possible in physics.

And the boundary condition for solution (8) is:
x=0,

0 =(Kiau+ Ksan— Kianan — Kszapnan)t’
+ (Ks—Kean +2K1a13a21 T
+2K3a13a220Tm — 2K 1antq— 2K3an T,
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x=1,
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+2K1anan tq T 2K3a13a22t K+ Kot
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T — T
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exp __EL +ngxp — L

Tq

t
— 2K3a221‘m+K3+K4)t+K7exp[_1._]

‘|—[ (Ksariaiz + Kian — Kzan)
+ 2(Kqa21+ Ksaizan — Kasan)
+6(K56121_ K6a11)+ Kl()]
/12Capai— anazn)+ K.

It means that the temperature and moisture at
x=0 and x=1 are transient in general, but this dis-
tribution is also possible in phy sics.

Assuming some constants have the following re-
lations between them: K3 (ai2— axan)=Kian,
KsCarn— aiz an) = Kran., Kean= Ksaz and
K9=0, solution (8) can be simplified as:
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When ¢t = 0, 6:_%+K8+K119

m q
which is a constant. Therefore, a solution with an
even initial temperature field is obtained.

Similarly, assuming: K3(an—auaz)=Kiau,
Kslai— apan)=Kraxn, Keaii=Ksazu, Kio=0,
a solution with an even initial moisture field, is ob-
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tained, and more details are not given here.

The algebraically explicit analytical solution (8)
a13K7Tm t

has terms like — — _—_— exp | —

and
Tm— Tq Tm

ngxp[_fj in 0, and K7exp{r_f“ in u. The

absolute values of these terms decrease rapidly with
t. Therefore, they are only effective in a time inter-
val not much higher than t, or 7. It reflects the
characteristic of non-Fourier and non-Fick heat and
mass transfer process. Since solution (8) includes
terms whose denominators are Tm— Tq, it cannot de-
generate simply into only Fourier or only Fick case.
Because this solution only consists of low-order pow er
functions of time and geometric coordinates, it is es-
pecially suitable as a benchmark to check and develop
numerical computation. However; the method of sep-
aration variables used above cannot lead to the solu-
tion with heat wave effect and the preliminary criteri-
on to consider the existence of non-Fourier heat wave

effect as in Ref. [ 13] .
2 The second set of analytical solution

As mentioned above, the methods of separation
variables can derive different solutions by assuming
various specific forms of function constitution. There-
fore, we should, according to the characteristic of the
equations to be resolved, try various methods of sepa-
ration variables to derive as many solutions of differ-
ent forms as possible. For example, assuming 0=

Ti(Ox+X (O+ Cix’ts u= To (D x+X2(x)
+C2xt, we can obtain:
0= 3(Cran+ Cran— Ciapa — C2a13a22)t2x
+ (6Craa1 tmn+6C2aBantm—6Crall 5y
—6C2a12‘cq+6C2a13a22‘Cq+ 6Ciapzan Ty
Csa3 T t

+ C— C4a13)tx*—rmi 7, &P | *

+ C6exp[— T_ﬂ x T[3(Crain— Cranais

— Cian) x+ 10(Csan— Cian)x’+ Crx]
/60Canan— anan)+ C ©r+ Cs
u =3(Cian + Cran)t*x + (Cs— 6Ci a1 Tn

_6C2a22‘fm)lx+ Csexp __L_l X

+[3(Crazi+ Craniaz— Caan) x°
+10(CGaz1— Cra)x” + Cox]
/60Canay — anax)+ sz3t+ Co» Q0)

where Ci— Cioare arbitrary constants,

section,
Ciarn= Csan,

Similar to the above

G (ap—anapn)= Cian,

assuming:

Ce =

C m ) C o
—_:a_B: and C7=0, solution (10) can be simplified
m~ Tq
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For solution (11)s when t=0, 0= Cg, which
0= Cs, u= Cyp. It

means that the temperature field is initially even and

is a constant; when x = 0,

the temperature and moisture are constants at x= 0.
Therefore, similar to the solution in the previous
paragraph, the boundary condition and the initial
condition of the solution are simple and suitable to be
a benchmark solution. The physics experiments

would also be easy to carry out.
3 Conclusions

Based on the method of separation variables with
addition developed in recent years, new methods of
separation variables are proposed:

=T O+ X (x)+ &K 2+Kax0t,

f= T (HOx+ X1(x)+ C]XSI‘.
Apply them to the non-Fourier and non-Fick heat and
mass transfer equation set of porous media, two sets
of algebraically explicit analytical solutions have been
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obtained. The boundary condition and the initial con-
The forms

of the solutions are also relatively simple. Besides

dition of these solutions can be constant.

their irreplaceable theoretical meaning for the study of
heat and mass transfer in the rapid drying process of
porous media, these analytical solutions can also be
applied as benchmark solutions to check the numerical
computation solutions.
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